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Abstract

The generalized extended stochastic central difference (GESCD) method is applied to study the response statistics and

first passage time of nonlinear ship rolling in narrow band stationary and non-stationary random seas. The GESCD

method is based on a combination of the extended stochastic central difference method with a statistical linearization

technique, modified adaptive time scheme, and time coordinate transformation. The extended stochastic central difference

method is, however, an extension of the stochastic central difference method for the determination of the recursive mean

square or covariance of responses of systems under narrow band stationary and non-stationary random disturbances.

Approximate first passage probabilities of nonlinear systems based on the modified mean rate of various crossings

proposed earlier by the first author were determined. It is concluded that the GESCD method is very accurate, simple and

efficient to apply compared with Monte Carlo simulation. The proposed method is applicable to cases with large

nonlinearities and intensive random excitations. The approximate first passage probabilities of the nonlinear system

determined by the proposed approach are very accurate as they are in excellent agreement with those evaluated by the

Monte Carlo simulation. It is believed that the model considered in this paper is a closer representation to reality than

those reported earlier in the literature.

r 2007 Published by Elsevier Ltd.
1. Introduction

The study of motion of ships or similar slender offshore structures in irregular seas has been performed over
the years due to the fact that ship safety is a very expensive issue. Central to the study is the problem of
predicting ship rolling motion due to random waves and associated first passage problem.

Owing to the strongly nonlinear nature of both the hydrodynamic damping and restoring moments, and the
non-stationary random nature of excitation and response processes no closed-form solution to the governing
equation of motion is possible and therefore approximate solution techniques have to be employed.
Most of the available approximate solution techniques can only deal with small nonlinearities (see for example
Refs. [1–4]). The model of nonlinear ship rolling motion in Refs. [1–4] is a nonlinear single degree-of-freedom
ee front matter r 2007 Published by Elsevier Ltd.
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(sdof) system under broad band stationary excitation. The damping in this model is of the linear-plus-
quadratic type while the stiffness is assumed to be of linear-minus-cubic term. The later has the softening
characteristics. This model appears to cater the essential features of ship rolling in irregular seas. The
techniques employed in Refs. [1–4] are essentially the generalized stochastic averaging (GSA) with statistical or
equivalent linearization [3] and the averaging procedure with assumption of the energy envelope of the single
degree-of-freedom nonlinear system as a one-dimensional (1D) continuous Markov process [1,2,4]. While they
are powerful analytical tools for dealing with such a problem the accuracy of generalized stochastic averaging
depends, to a large extent, on the ratio, k of bandwidth of the excitation process to that of the response
process. For the generalized stochastic averaging to give accurate results the ratio k has to be much greater
than unity. In other words, the generalized stochastic averaging technique hinges on the assumption that
damping is light. Moreover, small levels of excitation were assumed such that the response is approximately
stationary.

The techniques of statistical nonlinearization (SNL) [5] and generalized stochastic averaging of energy
envelope [6] have been employed to obtain the joint probability density function of displacement and velocity.
In Ref. [5] the excitation process was assumed to be stationary white noise although its intensity and
magnitudes of nonlinearities can be large, whereas in Ref. [6] the excitation process was broad band
stationary.

Other approaches for nonlinear ship rolling in random seas can be found in Refs. [7–11]. In Ref. [7] the joint
probability density function of nonlinear rolling motion was obtained with the non-Gaussian closure
technique. Some researchers [8,9] have employed the Melnikov function approach that is popular in chaotic
vibration studies of deterministic nonlinear systems.

The first-order approximation to the solution of the Fokker–Planck–Kolmogorov equation was presented
in Ref. [10]. The second-order approximation solution appeared in Ref. [11].

With its proven accuracy, computational efficiency and the fact that it is applicable to systems having large
nonlinearities and intense narrow band non-stationary random excitations, the generalized extended
stochastic central difference (GESCD) method [12] is applied to investigate the response statistics of
nonlinear ship rolling motion. The focus in the present studies is, however, on the capability of the proposed
method rather than on specific system parameters associated with practical design consideration. It may be
noted that high levels of damping are more typically encountered in practice [4]. The GESCD method is based
on a combination of the extended stochastic central difference (ESCD) method [13] with statistical
linearization (SL) technique, modified adaptive time scheme (MATS) [12], and time coordinate transformation
(TCT) [14]. In this paper, the first passage probabilities based on the modified mean rate of various crossings,
proposed earlier by Vanmarcke [15] for normal stationary random excitations and subsequently extended by
To [16] for linear systems under non-stationary random excitations are also obtained. The approximate first
passage probabilities in Ref. [16] has been successfully applied to discretized geometrically nonlinear plate
structures under non-stationary random excitations [17]. This approach with due modification to the time step
sizes of computing the first passage probabilities of nonlinear systems is applied in the present investigation.
Monte Carlo simulation (MCS) results are also obtained for representative cases so that direct comparison can
be made.

The contents of the remaining sections are as follows. Section 2 is concerned with the introduction and
derivation of recursive expressions of the GESCD method for the response analysis of nonlinear ship rolling in
narrow band stationary and non-stationary random seas. First passage probabilities of the nonlinear system
are considered in Section 3. Responses computed by using the GESCD method and Monte Carlo simulation
are presented in Section 4. Computed first passage probabilities of nonlinear ship rolling motion based on
type-D crossings are also included. Conclusions are drawn and presented in Section 5.

2. Nonlinear ship rolling in narrow band non-stationary random seas

The model of nonlinear ship rolling in narrow band non-stationary random beam seas has the following
governing equation of motion:

€yþ a _yþ b _y _y
�� ��þ gy� my3 ¼ f ðtÞ, (1)
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where y is the rolling angle measured in degrees; a, b, g and m are constant; and f(t) is the narrow band
non-stationary random excitation process, which is the solution of the filter to be defined later in the
following.

Three aspects of difference between Eq. (1) and that by Roberts and associates [1–4] should be mentioned.
First, the excitation process on the right-hand side of Eq. (1) is assumed to be narrow band non-stationary
random while the corresponding term in Refs. [1–4] was assumed to be broad band stationary random or non-
white process. On physical grounds, the excitation process considered in the present investigation is a more
accurate representation since it has been reported that the excitation process is narrow band stationary
random [18], for example. In the latter reference it was reported that simulation data of rolling responses of
damage ships did not qualify to be stationary random. Second, the intensity of the excitation process on the
right-hand side of Eq. (1) is not limited to a small value. The latter is a requirement in the solution considered
in Refs. [1–4]. This requirement, in turn, confined the damping force in Refs. [1–4] to be small. On the other
hand, the damping force considered in Eq. (1) can be large. In fact, high levels of damping are typical in
practice [4]. Third, in Refs. [1–4] the energy envelope process is approximated as a 1D continuous Markov
process, whereas in the present investigation no such approximation is assumed and therefore Eq. (1) in the
present investigation is more general.

The narrow band random excitation process in Eq. (1) is governed by the following filter equation:

mf
€f þ cf

_f þ kf f ¼ rðtÞ ¼ ef ðtÞwðtÞ, (2)

where mf, cf and kf are the mass, damping and stiffness coefficients of the filter and ef is a time-dependent
deterministic modulating function. The zero-mean stationary Gaussian white noise process w(t) has the
spectral density S0. Thus, the right-hand side of Eq. (2) is the non-stationary random excitation to the filter. Of
course, if the deterministic modulating function is set to unity the input to the filter becomes a stationary
random process. By changing the natural frequency, damping ratio of the filter and the spectral density of the
Gaussian white noise excitation, a variety of narrow band random processes, in the time domain, with
different properties such as central frequencies and bandwidths can be obtained [12,13].

2.1. Discretized equations and application of statistical linearization

Eq. (1) cannot be solved in closed form and therefore an approximated solution technique is applied. The
first stage in the approximation is the discretization in the time domain such that the equations for the filter
and ship rolling motion are, respectively,

mf
€f ðsÞ þ cf

_f ðsÞ þ kf f ðsÞ ¼ ef ðsÞwðsÞ (3)

and

€yðsÞ þ hðyðsÞ; _yðsÞÞ _yðsÞ þ gðyðsÞÞyðsÞ ¼ f ðsÞ, (4)

in which h(.) and g(.) denote, respectively, the nonlinear damping and nonlinear stiffness coefficients in Eq. (1),
while s represents the number of time step in the time domain such that ts+1�ts ¼ Dt.

The difference equation in Eq. (4) is nonlinear. However, at every time step the statistical linearization
technique can be applied. It may be appropriate to note that while in the statistical linearization technique the
response process at every time step is assumed to be Gaussian the response for the entire time duration is non-
Gaussian. This is different from the conventional statistical linearization technique in which an equivalent
system is determined for the entire time range [19]. After the application of the statistical linearization
technique to Eq. (4) at every time step and some algebraic manipulation one can show that the equivalent
equation becomes

€yðsÞ þ 2zeðsÞoeðsÞ _yðsÞ þ o2
eðsÞyðsÞ ¼ f ðsÞ, (5)

where

2zeðsÞoeðsÞ ¼ aþ

ffiffiffi
8

p

r
bs _yðsÞ (6)
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and

o2
eðsÞ ¼ g� 3ms2yðsÞ, (7)

in which ze(s) and oe(s) are the equivalent damping ratio and equivalent natural frequency of the system at
time step ts, whereas sy(s) and s _yðsÞ are the standard deviations of angular displacement y and angular velocity
_y at time step ts.
2.2. Recursive responses by generalized extended stochastic central difference method

Having applied the statistical linearization technique at every time step, the next stage in the GESCD
method [12] is to obtain the recursive variance expressions for angular displacement. By applying Eq. (5) and
the steps in Ref. [13], it can be shown that the recursive variance of angular displacement is

Ryðsþ 1Þ ¼ N2
2yRyðsÞ þN2

3yRyðs� 1Þ þ ðDtÞ4N2
1yRf ðsÞ þ 2N2yDyðsÞN3y þ 2ðDtÞ2N2yGðsÞN1y

þ 2ðDtÞ2N3yHðsÞN1y, ð8Þ

where fs ¼ f(s), ys ¼ y(s), G(s) ¼ /ysfsS, H(s) ¼ /ys�1fsS, Rf ðsÞ ¼ hf
2
s i; RyðsÞ ¼ hy

2
s i,

DyðsÞ ¼ ysys�1

� �
¼ N2yRyðs� 1Þ þN3yDyðs� 1Þ þ ðDtÞ2N1yGðs� 1Þ, ð9Þ

N1y ¼ 1þ
1

2
ðDtÞ2zeðsÞoeðsÞ

� ��1
; N2y ¼ N1y 2� ðDtÞ2o2

eðsÞ
� 	

, (10a,b)

N3y ¼ N1y ðDtÞzeðsÞoeðsÞ � 1½ � (10c)

and Rf(s) is the recursive variance of the response of the filter while the angular brackets denote an ensemble
average or mathematical expectation of the enclosing quantity. By applying the stochastic central difference
(SCD) method [20] to Eq. (3), one can show that the recursive variance of filter response is

Rf ðsþ 1Þ ¼ N2
2f Rf ðsÞ þN2

3f Rf ðs� 1Þ þ ðDtÞ4N2
1f RwðsÞ þ 2N2f Df ðsÞN3f , (11)

where the variance of uniformly modulating discrete white noise process is Rw(s) ¼ 2pS0ef
2(s) and

Df ðsÞ ¼ f sf s�1

� �
¼ N2f Rf ðs� 1Þ þN3f Df ðs� 1Þ, (12)

N1f ¼ mf þ
1

2
ðDtÞcf

� ��1
; N2f ¼ N1f 2mf � ðDtÞ2kf

� 	
, (13a,b)

N3f ¼ N1f

1

2
ðDtÞcf �mf

� �
. (13c)

In Eq. (8) the recursive expressions G(s) and H(s) that carry the effects of the narrow band random process
can be obtained by the ESCD method [13] as

GðsÞ ¼ ðDtÞ2N1yDf ðsÞ þN2yHðsÞ þN3yHðs� 1ÞN2f þN3yGðs� 2ÞN3f (14)

and

HðsÞ ¼ Gðs� 1ÞN2f þ ðDtÞ2N1yRf ðs� 2ÞN3f þN2yGðs� 2ÞN3f þN3yHðs� 2ÞN3f . (15)

For convenience of reference, Eqs. (8)–(15) are collectively referred as the GESCD method. Of course,
Eqs. (6) and (7) contain the standard deviations of angular displacement and angular velocity, sy(s) and s _yðsÞ.
The variance of angular displacement is in fact, s2yðsÞ ¼ RyðsÞ. Therefore, in the present problem the recursive
variance of angular velocity has to be derived independently. To this end, one may apply the deterministic
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central difference method so that the angular velocity at ts becomes

_yðsÞ ¼
1

Dt
yðsÞ � yðs� 1Þ½ �. (16)

By multiplying Eq. (16) by itself and taking the ensemble averages on both sides of the resulting equation,
it reduces to

s2_yðsÞ ¼ _y2ðsÞ
� �

¼
1

ðDtÞ2
hy2ðsÞi þ hy2ðs� 1Þi � 2hyðsÞyðs� 1Þi
� 	

. (17)

This completes the derivation of the recursive expressions in the GESCD method with particular reference
to ship rolling in narrow band stationary and non-stationary random beam seas. As pointed out in Ref. [12],
the time step sizes for the filter and system are different since their natural frequencies at every time step are
not identical in general. Consequently, at every time step an output from the filter cannot be directly applied as
an input to the system of interest. To resolve this problem the time step size of the output from the filter is
interpolated. This strategy of dealing with different time step sizes between the filter and the system has been
proved to be efficient and accurate [12,13]. It has been demonstrated that without such an interpolation
computational instability can occur [12]. In addition, since the system is nonlinear and therefore the modified
adaptive time scheme (MATS) together with the time coordinate transformation (TCT) for stiff system are
included in the GESCD method.

Finally, as mentioned in Ref. [13], by applying different envelope functions ef(s), constant 2pS0 which is I in
Refs. [12,13], the natural frequencies of the filters and the ratios of damping to mass, a variety of different
shapes, spectral densities, center frequencies and bandwidths of the narrow band random processes from the
filters can be obtained. This is a unique and efficient feature of the ESCD method for linear systems and
GESCD method for nonlinear systems.
3. First passage probabilities of nonlinear systems

With the time-dependent recursive mean squares or variances of angular displacements and velocities
obtained, the first passage problem can now be considered. Approximate first passage probabilities based on
the modified mean rate of various crossings proposed earlier by the first author [16,17] can be computed. In
the latter work the trapezoidal rule with uniform time step size was employed to evaluate the first passage
probabilities. However, in the present investigation because of the large nonlinearities of the system and the
fact that the natural frequency at every time step is different from one time step to another, the first passage
probabilities are evaluated by the trapezoidal rule with variable time step sizes.

In the present investigation only the distribution of the first passage probabilities for narrow band and wide
band non-stationary random processes based on type-D crossings is included in this section. Other types of
barriers can be found in Ref. [16]. The first passage probability for type-D barrier based on Poisson process
assumption is [15]

LDðtÞ ¼ e
�2
R t

0
nbðuÞ du

, (18)

where

nbðuÞ ¼ nb ¼ n0 e�b=2s2u , (19)

in which b is the barrier level and n0 is the zero crossing rate. Thus, LD(t) in Eq. (18) is the probability that the
time of first passage of the level b by |u(t)| is greater than t. It is also the probability that the absolute value of
the process remains below b at all times in the interval [0, t]. Eq. (18) has been numerically evaluated by the
trapezoidal rule using constant time step size in Refs. [16,17] as

LDðsÞ ¼ e�ðDtÞ aDð1ÞþaDð2Þþ���þaDðsÞ½ �, (20)

where LD(s) is LD(t) evaluated at time ts and aD(s) is aD(t) ¼ 2vb(t) at ts.
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For nonlinear systems the natural frequencies, and therefore the time step sizes, at every time step are
different such that Eq. (20) becomes

LDðsÞ ¼ e� ðDtÞ1aDð1ÞþðDtÞ2aDð2Þþ���þðDtÞsaDðsÞ½ �, (21)

in which (Dt)s is the time step size at time step ts and is evaluated in accordance with Eq. (10) of Ref. [13].
Expressions similar to Eq. (21) for other types of barriers can be derived but for brevity they are not

considered here.

4. Computed recursive nonlinear responses and first passage probabilities

Three cases are considered in the following sub-sections. In the first case, results are obtained for narrow
band non-stationary random excitations. In the second case, comparisons are made of responses of narrow
band stationary random responses to wide band stationary random response. The third case in Subsection 4.3
is concerned with comparison of narrow band non-stationary random responses to wide band non-stationary
random responses. In the first case, results by the Monte Carlo simulation technique are included for direct
comparison. Furthermore, in Subsection 4.4 first passage probabilities based on type-D crossings are
presented. Remarks are included in Subsection 4.5.

For identification with given system parameters in Eq. (1) and known definitions of linear single degree-
of-freedom oscillator, Eqs. (6) and (7) are re-written as in the following manner:

2zeðsÞoeðsÞ ¼ 2zs 1þ

ffiffiffi
8

p

r
Zs _yðsÞ

" #
(22)

and

o2
eðsÞ ¼ o2

s 1� 3�s2yðsÞ
h i

, (23)

where zs and os are the damping ratio and natural frequency of the associated linear system. Thus, the system
parameters in Eq. (1) are

a ¼ 2zs; b ¼ 2zsZ; g ¼ o2
s ; m ¼ �o2

s .
Fig. 1. Response variance of rolling ship model under narrow band non-stationary random excitation with of ¼ 1.0 rad/s, zf ¼ 0.01,

os ¼ 1.0 rad/s, zs ¼ 0.0125, Z ¼ 0.04, e ¼ 5.0. Monte Carlo simulation (J), and GESCD (’).
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Fig. 2. Response variance of rolling ship model under narrow band non-stationary random excitation with of ¼ 1.0 rad/s, zf ¼ 0.01,

os ¼ 1.0 rad/s, zs ¼ 0.0125, Z ¼ 0.4, e ¼ 8.0. Monte Carlo simulation (J), and GESCD (’).

Fig. 3. Response variance of rolling ship model under narrow band non-stationary random excitation with of ¼ 1.0 rad/s, zf ¼ 0.01,

os ¼ 1.0 rad/s, zs ¼ 0.0125, Z ¼ 0.4, e ¼ 5.0. Monte Carlo simulation (J), and GESCD (’).

Table 1

Parameters of nonlinear rolling ship model

Figure number 1 2 3

ms (kg) 1.0 1.0 2.0

os (rad/s) 1.0 1.0 1.0

zs (%) 1.25 1.25 1.25

Z 0.04 0.4 0.4

e 5.0 8.0 5.0

ðs2yÞmax 26,633 26,633 6658
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4.1. System under narrow band non-stationary random excitation

A uniformly modulated zero mean Gaussian white noise is input to the filter. The deterministic uniformly
modulated function is given by

ef ðtÞ ¼ 4:0 e�0:05t � e�0:1t

 �

. (24)
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Monte Carlo simulation results based on Eqs. (1) and (2) together with those evaluated by the GESCD
method are included in Figs. 1–3. It may be appropriate to note that in the Monte Carlo simulation results the
time step sizes employed in the numerical integration scheme, the Runge–Kutta fourth-order algorithm are
constant. They are different from those selected in the GESCD method. In the latter method the time step sizes
for the filter and system were computed by applying Eq. (10) of Ref. [13] in addition to the interpolation
scheme mentioned in Section 2. The spectral density of the excitation to the filter is S0 ¼ 0.01 unit and the filter
mass mf ¼ 1.0 kg. The filter natural frequency is 1.0 rad/s, and filter damping ratio is 0.01. The properties of
the rolling ship are listed in Table 1 in which the subscript s denotes the rolling ship. It should be noted that in
the Monte Carlo simulation every solution was evaluated with 200 realizations, each of which has 25,600
points.

In Table 1 the term ðs2yÞmax is the maximum variance of displacement response for the corresponding linear
system. It is used to normalize the nonlinear stiffness coefficient. One typical feature shown by the foregoing
figures is that the system responses attenuate rapidly. This is because the nonlinear damping increases with
increasing angular velocity standard deviation. The figures show that the schemes implemented in the GESCD
method such as the modified adaptive time scheme, input interpolation, expression of angular velocity
variance are correct since results by the GESCD method compared very well with those applying the Monte
Carlo simulation. This, in turn, indicates that the GESCD method is an excellent alternative to various
approximate techniques available in the literature for solution of nonlinear ship rolling motion in narrow band
stationary and non-stationary random seas.
Table 2

Parameters for stationary response cases

White noise Narrow band

S0 ¼ 0.01 2pS0 ¼ 0.0628 zf ¼ 1.0%

of ¼ 1.0 rad/s zf ¼ 5.0%

zf ¼ 10.0%

e ¼ 0.01, Z ¼ 0.02, zs ¼ 1.0%, os ¼ 1.0 rad/s, Dt ¼ 0.83 s

S0 ¼ 0.01 2pS0 ¼ 0.0628 zf ¼ 1.0%

of ¼ 1.0 rad/s zf ¼ 5.0%

zf ¼ 10.0%

zf ¼ 100.0%

e ¼ 0.02, Z ¼ 0.5, zs ¼ 1.0%, os ¼ 1.0 rad/s, Dt ¼ 0.83 s

Fig. 4. Effect of bandwidth on variance of ship motion with narrow band stationary random excitation with of ¼ 1.0 rad/s, os ¼ 1.0 rad/s,

zs ¼ 0.01, Z ¼ e ¼ 0.01. zf ¼ 0.01 (W), zf ¼ 0.05 (&), zf ¼ 0.10 (B), and white noise (+).
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Fig. 5. Effect of bandwidth on variance of ship motion with narrow band stationary random excitation with of ¼ 1.0 rad/s, os ¼ 1.0 rad/s,

zs ¼ 0.01, Z ¼ 0.5, e ¼ 0.02. zf ¼ 0.01 (J), zf ¼ 0.05 (W), zf ¼ 0.10 (&), zf ¼ 1.00 (B), and white noise (+).

C.W.S. To, Z. Chen / Journal of Sound and Vibration 309 (2008) 197–209 205
4.2. Comparison of narrow and wide band stationary random responses

The computed results in this case are used to show the effect of bandwidth of narrow band process on
stationary random response. A parametric study is performed on the system with various narrow
band stationary random excitations as well as different center frequencies of the filter. The responses
are compared with those of the system subject to zero mean Gaussian white noise excitations. The spectral
density of the white noise inputs to the system is S0 ¼ 0.01 unit, thus, Rw(s) ¼ 0.0628. That is, the constant of
the narrow band input to the system is 2pS0 ¼ 0.0628 which is defined in Eq. (11). Two examples are
considered in this subsection. The pertinent parameters are listed in Table 2. Computed results are included
in Figs. 4 and 5.

From the results in Figs. 4 and 5, several observations should be noted. Firstly, all responses to narrow band
random excitations have overshoots while for the white noise and broad band processes it does not have
overshoot. Secondly, the narrower the bandwidth of the narrow band excitation is, the longer it takes for the
system response to reach its stationary value. Thirdly, for narrow band stationary random excitation, the
magnitude of response increases with increasing bandwidth when the latter is relatively small. However, when
the bandwidth becomes large the magnitude of response decreases with increasing bandwidth. Fourthly,
similar to the results obtained for a Duffing oscillator studied in Ref. [12], the increase of nonlinear coefficient
reduces the amplitude of system response.

4.3. Comparison of non-stationary random responses

In this sub-section, narrow band non-stationary random excitations are input to the rolling ship model and
its responses are compared with those of the model under uniformly modulated Gaussian white noise
excitation. The pertinent data for this case are presented in Table 3. The deterministic modulating function is
defined by Eq. (22). Computed results are included in Figs. 6 and 7.

With reference to the results in Figs. 6 and 7, the following conclusions can be drawn. First, in contrast
to their stationary counterparts, the responses to narrow band non-stationary random excitation increase
with the decreasing bandwidth. Second, the bandwidth effect on the amplitudes of responses to narrow
band excitation is more significant than that in the stationary cases. In other word, the value of
the amplitude difference of responses to narrow band non-stationary excitations is larger than that of
responses to narrow band stationary excitation. Of course, in this comparison the damping ratios of the
filter in the non-stationary excitation cases are the same as those for the stationary random excitation ones.
Third, similar to the linear cases, amplitudes of responses decrease with increasing natural frequency of
the system.
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Fig. 6. Effect of bandwidth on variance of ship motion with narrow band non-stationary random excitation with of ¼ 1.0 rad/s,

os ¼ 1.0 rad/s, zs ¼ 0.01, Z ¼ e ¼ 0.01. zf ¼ 1.00 (J), zf ¼ 0.10 (W), zf ¼ 0.05 (B), and white noise (&).

Fig. 7. Effect of bandwidth on variance of ship motion with narrow band non-stationary random excitation with of ¼ 1.0 rad/s,

os ¼ 1.0 rad/s, zs ¼ 0.01, Z ¼ 0.5, e ¼ 0.02. zf ¼ 0.01 (J), zf ¼ 0.05 (&), zf ¼ 0.10 (W), zf ¼ 1.00 (+), and white noise (B).

Table 3

Parameters for nonstationary response cases

Wide band Narrow band

S0 ¼ 0.01 2pS0 ¼ 0.01 zf ¼ 5.0%

of ¼ 1.0 rad/s zf ¼ 10.0%

zf ¼ 100.0%

os ¼ 1.0 rad/s, e ¼ 0.02, Z ¼ 0.5, zs ¼ 1.0%, ms ¼ 1.0 kg, Dt ¼ 0.83 s for corresponding linear model

S0 ¼ 0.01 2pS0 ¼ 0.01 zf ¼ 1.0%

of ¼ 3.0 rad/s zf ¼ 5.0%

zf ¼ 10.0%

zf ¼ 100.0%

os ¼ 3.0 rad/s, e ¼ 0.02, Z ¼ 0.5, zs ¼ 1.0%, ms ¼ 1.0 kg, Dt ¼ 0.48683 s for corresponding linear model

C.W.S. To, Z. Chen / Journal of Sound and Vibration 309 (2008) 197–209206
4.4. First passage probabilities based on type-D crossings

Having studied the difference between the nonlinear ship rolling in wide band and narrow band random
seas, and the efficiency as well as accuracy of responses evaluated by the GESCD method, it is logical and
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natural to investigate the differences, if any, between the associated first passage probabilities. In this respect,
Eq. (21) is applied.

Some representative results based on the the so-called D-crossing are presented in Fig. 8 in which GESCD
denotes those computed by the GESCD method, while Monte Carlo simulation denotes those obtained by the
Monte Carlo simulation for Eq. (1) in which a ¼ b ¼ 0.025, g ¼ 1.0 and m ¼ 0.0045 whereas the spectral
density S0 ¼ 1.0 unit. The deterministic modulating function of the wide band excitation process applied to

the filter is defined in Eq. (24). The barrier level in this case is b ¼ 2 ðs2yÞmax

h i1=2
. Fig. 9 includes results based

on the D-crossing and evaluated by the GESCD method. System parameters for this case are those applied for
Fig. 8. Probabilities of D-crossing of nonlinear ship rolling with b ¼ 2 ðs2yÞmax

h i1=2
. Monte Carlo simulation (+), and GESCD (J).

Fig. 9. Probabilities of D-crossing of nonlinear ship rolling with b ¼ ðs2yÞmax

h i1=2
. Wide band non-stationary random (__), narrow band

non-stationary random (W), and narrow band stationary random (K).
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the results in Fig. 8, except that the excitation to the system is narrow band random with the input to the filter
having a modulating function defined in Eq. (24) and spectral density S0 ¼ 1.0 unit. The parameters for the
filter are those presented in Section 4.1. That is, of ¼ 1.0 rad/s, zf ¼ 0.01 and mf ¼ 1.0 kg. The barrier level in

this case is b ¼ ðs2yÞmax

h i1=2
. With reference to the computed results presented in Fig. 8, one observes that the

GESCD method is very accurate compared with the Monte Carlo simulation data. However, the GESCD
method is far more efficient in that the ratio of computational time applying the Monte Carlo simulation to
that by the GESCD method is over 200 on average. In regard to the results in Fig. 9, one can observe that the
first passage probability of the model with narrow band stationary or non-stationary random excitation is
significantly different from that with wide band non-stationary excitation. On the other hand, there is
insignificant difference between results for the narrow band stationary and non-stationary random excitations.
This again emphasizes the importance of treating the random waves as narrow band random processes.

4.5. Remarks

In the foregoing it has been demonstrated that results computed by the GESCD method have excellent
agreement with those obtained by the Monte Carlo simulation. It is understood that the system parameters
applied above do not necessarily represent those of a particular ship model. The parameters were chosen to
demonstrate the capability of the GESCD method for relatively large nonlinearities and intensive excitations.

5. Conclusions

Responses and first passage probabilities based on type-D crossings of nonlinear ship rolling motion have
been studied and presented in this paper. The emphasis of the studies was on the development and
presentation of the GESCD method for analysis of nonlinear ship rolling rather than on effect and implication
of response analysis of specific ship design.

Two important and new features of the approach introduced in the foregoing are: (a) the wave motion is
considered as a narrow band non-stationary random process, and (b) the nonlinearities and intensity of
excitation process are large and therefore the present model is different from those available in the literature.
Unlike Refs. [1–4], for example, in which the energy envelope process was approximated as a 1D continuous
Markov process, the present approach does not require such an approximation. Thus, the approach
introduced in this paper is mathematically simpler and the nonlinear ship rolling motion model is physically
more general.

Explicit recursive expressions of the GESCD method for the nonlinear ship rolling motion model have been
derived. First passage probabilities based on type-D crossings of nonlinear systems has been approximated
with the trapezoidal rule. Computed results by the Monte Carlo simulation are also presented for direct
comparison. It is observed that results by the GESCD method and Monte Carlo simulation are in excellent
agreement. The GESCD method is very efficient compared with the Monte Carlo simulation. Computed
results also indicate the importance of treating the excitation process as narrow band random. It may be
appropriate to note that as the method proposed is for response analysis of ship rolling motion with large
nonlinearities and intensive stationary and non-stationary random excitations, comparisons were made only
between results of the proposed method and those of Monte Carlo simulation, since other available
approaches are only applicable to systems with small nonlinearities and weak stationary random excitations.

For the particular system parameters considered in the present studies, it is also observed that (a) the
amplitudes of responses of the resonant systems are much larger than those of their corresponding non-
resonant counterparts which is as expected; (b) multiple peaks of variance occur when the natural frequency of
the system is near the center frequency of the narrow band non-stationary random excitation; (c) the
difference between responses to narrow band and to white noise excitation decreases with increasing
frequency; (d) the difference between responses to narrow band and to white noise excitation decreases with
increasing of stiffness nonlinearity; (e) the number of peaks of responses to narrow band excitation increases
with increasing nonlinear coefficient; and (f) magnitudes of peaks of responses reduce with increasing
nonlinear stiffness coefficient.
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Finally, it should be stated that with the proposed approach limiting or capsizing moments of typical ships
can be obtained and examined. These constitute the second phase of the investigation and shall be reported in
due course.
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